<name> Class: Honors Geometry Date: <date> Topic: Lesson 5-3 (Concurrent Lines, Medians and Altitudes)

Definition	$\frac{\text{Concurrent Lines}}{\geq 3 \text{ lines that intersect } @ 1 \text{ pt.}}$
Definition	Point of concurrency Pt. that concurrent lines meet at.
Definition	<u>Median of a triangle</u> A segment whose endpts are a vertex & midpoint of opposite side.
Definition	<u>Altitude of a triangle</u> \perp segment fm a vertex to the line containing the opposite side. May be inside, outside or on a leg.
Triangle centers	 Points of concurrency of: 1. ⊥ bisectors → <u>circumcenter</u> 2. ∠ bisectors → <u>incenter</u> 3. medians → <u>centroid</u> (center of "gravity") 4. altitudes → <u>orthocenter</u>
Triangle circles	 circumcenter → circle is <u>circumscribed</u> touching the vertices incenter → circle is <u>inscribed</u> touching the sides
Theorem 5-6	The \perp bisectors of the sides of a Δ are concurrent at a pt equidistant fm the vertices.
Theorem 5-7	The \angle bisectors of a Δ are concurrent at a pt equidistant fm the sides.
Theorem 5-8	The medians of a Δ are concurrent at a pt that is $\frac{2}{3}$ dist fm each vertex to the midpoint of the opposite side.
Theorem 5-9	The lines that contain the altitudes of a Δ are concurrent.